
S1 Supplementary data

S1.1 Incidence data

Monthly incidence data were available from the Massachusetts (MA) Department of Public Health (MDPH).

The data were stratified by age (1-y breakdown for individuals <20 yo, 5-y breakdown for individuals≥20 yo).

For simplicity, we aggregated the data into 7 epidemiologically relevant age groups: infants 0–1 yo (i.e., [0,

1) yo); preschool children 1–5 yo ([1, 5) yo); school-aged children 5–10 yo ([5, 10) yo), 10–15 yo ([10, 15) y),

and 15–20 yo ([15, 20) yo); adults 20–40 yo ([20, 40) y) and ≥40 yo. According to the MDPH1, the case

definition for pertussis in non-outbreak settings is: laboratory confirmation by culture in a patient with any

cough illness; a cough illness lasting ≥2 weeks, with lab confirmation by serology in a person not vaccinated

with a pertussis-containing vaccine in the 3 previous years; a cough illness lasting ≥2 weeks with 1 or more of

the following: paroxysms of coughing, inspiratory whoop, or post-tussive vomiting, without other apparent

cause, in an individual who has a positive PCR test; a cough illness lasting ≥ 2 weeks with one or more of

the following: paroxysms of coughing, inspiratory whoop, or post-tussive vomiting, without other apparent

cause, without appropriately-timed negative laboratory test, in an individual who is epidemiologically-linked

to a lab-confirmed case.

A timeline of pertussis surveillance in MA is presented in table S1. Notably, serological testing became

available in 1987 for individuals ≥11 y, leading to an immediate and substantial increase in the number of

reported cases in 11–19 yo and ≥20 y (1). By contrast, introduction of PCR testing in January 2005 did

not lead to noticeable increases in the number of reports in adolescents and adults (Fig. S1). In 2006, a

booster reduced-dose of acellular pertussis vaccine combined with tetanus and diphtheria toxoids (Tdap)

was recommended among adolescents 11 to 18yo (2). We therefore restricted our analysis to data during

1990–2005 (2005 included, ny = 16 y of monthly data), a period of stable surveillance before the introduction

of Tdap.
1http://tinyurl.com/p9mmhwv
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Figure S1: Monthly reported cases by age group during 1990–2005. Dashed lines represent smoothed data
from loess regression (degree 2, span 0.75). For visual clarity, the y-axis is square-root transformed and
differs between panels.

Date Event Source
1950 Start of mass production of whole-cell pertussis (wP) vaccines (1)
1986 Start of increased investigation of institutional outbreaks (1)
1987 Start of serologic ELISA for ≥11 yo (1)
1989 Explicit criteria for clinical diagnosis adopted (1)

October 1996 Switch to acellular pertussis vaccine (aP) Tripedia (3)
January 2005 Start of PCR testing http://tinyurl.com/p9mmhwv

2006 Tdap booster dose recommended in 11–18 yo (2)

Table S1: Timeline of pertussis surveillance effort and of pertussis vaccination in MA.

S1.2 Immunization data

Immunization levels of children entering kindergarten were available from from the MDPH, from school

year 1975/1976 for children having received ≥4 doses and from school year 1995/1996 for children having

received 5 doses (4). As shown in Fig. S2, the vaccine coverage was approximately constant during this

period. Therefore, we assumed constant vaccine coverages v1 = 0.97 and v2 = 0.93, where v1 represents the
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vaccine coverage for the primary course and v2 the conditional probability of having received a fifth dose

given that 4 doses have been received.

In the absence of vaccination data before 1970, we made pragmatic assumptions based on available

evidence. Although mass production of the wP vaccine began in 1950 in MA (1), it was already distributed

across the US from 1940 (5). This is consistent with historical incidence data, which show that pertussis

incidence in MA began decreasing in the 1940s and steeply declined after 1950 (6). We therefore assumed

that vaccination had started in 1940 and that the vaccine coverage ramped up from 0 in 1940 to v1 in 1955.

We also assumed that the preschool booster dose began being administered in 1967 (7).
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Figure S2: Pertussis vaccine coverage in MA. Source: MDPH immunization surveys (4).

S1.3 Age-specific seasonality

Monthly incidence data by age group are presented in Fig. S1. To examine the age-specific seasonality,

we computed, for each year y = 1, . . . , ny, the proportion of cases during month m = 1, . . . , 12, pm,y =
xm,y∑12

m′=1
xm′,y

, where xm,y is the number of cases reported during month m in year y. As noted in a previous

study in MA (8) and in another study in the US overall (9), the different age groups had a different pattern

of seasonality. In children 0–5 yo and in adults≥20 yo, higher proportions of cases were observed in July–
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August; by contrast, in adolescents higher proportions of cases were observed during October–December,

with a peak in November (Fig. S3). As a consequence, differences of synchrony were observed between age

groups (Fig. S4): cases in infants 0–1 yo coincided with cases in 1–5 yo and adults, but preceded cases in

adolescents by 3 mo.

[0,1) [1,5)

[5,10) [10,15)

[15,20) [20,40)

40+

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

P
ro

po
rt

io
n 

of
 c

as
es

 th
at

 m
on

th

Figure S3: Age-specific seasonality in reported cases. The figure represents, for each age group, the year-
to-year variability in the proportion of reported cases during month m = 1, . . . , 12 , {pm,y}y=1,...,ny

. [Use
color figures with bootstrap significance.]
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Figure S4: Cross-correlations between age groups, with age group 0–1 yo taken as the reference age group.
Before computation, the data in each age group were prewhitened by taking the residuals from a seasonal
ARIMA(2, 0, 0)(1, 0, 0)[12] model, identified as the most parsimonious model in infants 0–1 y of age (10).

S1.4 Quantifying trends by age group

To quantify age-specific trends in reported cases, we fitted Poisson regression models for each age group,

with time as covariate and population sizes as offsets:

xt
Nt
∼ P(eα+βt)

where xt represents the annual number of cases, Nt the population size, and t the time (in y). The trend

was estimated as 100× (eβ − 1), which represents the annual relative variation (in percents) in the number

of reported cases. These estimates, presented in Table S2, are reported in the main text.
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Age group Trend (se)
[0,1) y –0.9 (0.8)
[1,5) y 2.0 (1.2)
[5,10) y –2.7 (1.2)
[10,15) y 6.2 (0.4)
[15,20) y 9.3 (0.4)
[20,40) y 17.0 (0.7)
40+ y 16.4 (0.7)
overall 9.7 (0.2)

Table S2: Age-specific trends (standard errors) estimated from the annual incidence data by Poisson regres-
sion.

S1.5 Demographic data

Age-stratified mid-year population estimates in MA were available from the US census bureau for years

1990–2005 (11, 12). Annual number of births were shared by Kevin Bakker for years 1990–2005 (13). These

demographic data, plotted in Fig. S5, were interpolated using smoothing splines (with 10 degrees of freedom)

to calculate the time-varying annual number of births, B(t); the age-stratified population sizes, Ni(t); and

the first derivative of the age-stratified population sizes, Ṅi(t). These quantities were used as covariates in

the model so that the simulated population sizes approximately equalled the actual values (cf. Text S2.1.3).
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Figure S5: Demographic data, MA during 1990–2005. A, B: Age-specific population sizes; C: Annual birth
rate (per 1000); D: Annual births (in thousands).

S2 Supplementary methods

S2.1 Model formulation

S2.1.1 A model of pertussis transmission with different modes of loss of immunity

We implemented an age-stratified, compartmental model of pertussis transmission, building on previously

described models (14–16). The model is an extension of the classic SEIR model that allows for post-

vaccination infections in previously vaccinated or infected individuals. The population of susceptible is

divided into those naive to exposure (S(1)) and those whose immune system has been previously primed by

vaccination or natural infection (S(2)). Exposed and infected individuals are similarly divided into those

who experience a naive infection (E(1) and I(1)) or a post-vaccination infection (E(2) and I(2)). Upon

recovery from either type of infection, individuals move to the recovered class, R. To account for possible

differences between infection- and vaccine-derived immunity, vaccinated individuals are explicitly modeled

(V ). Following recent advances in the literature (17–20), we considered 2 possible modes of failure of
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infection- or vaccine-derived immunity:

1. Waning (failure in duration): immunized individuals lose their immunity and become susceptible (S(2))

at a rate αI for infection-derived immunity and αV for vaccine-derived immunity.

2. Leakiness (failure in degree): immunized individuals (R or V ) remain susceptible to a post-vaccination

infection (E(2)), but at lower degree than susceptible individuals (S(1) or S(2)). The degree of suscep-

tibility is εI for infection-derived immunity and εV for vaccine-derived immunity.

For vaccine-derived immunity, we additionally considered a third mode of failure, for which, with probability

εA, vaccinated individuals immediately fail to mount an immune response and move the S(1) class (failure

in take or primary vaccine failure (18)).

Individuals are categorized by 5-y age groups from age 5 y to age 75 y; the 0–5 y age group is further

divided into 1–5 y and infants aged 0–4 mo and 4–12 mo. The 0–4 mo age group is included to represent

the fact that infants are fully vulnerable to infection before receiving the second dose of DTP at age 4

months (16). Overall, the model consists of 17 age groups, labelled i = 1, . . . , 17. Aging occurs continuously,

at rates δi = 1
∆ai

yr−1, where ∆ai is the age span in age group i. To model the effect of the primary

vaccination course, a fraction v1 of susceptible individuals (S(1) and S(2)
2 ) is moved to the vaccinated class

on aging from 0–4 mo to 4–12 mo. Similarly, the effect of the preschool booster dose is modeled by moving

a fraction v2 of susceptible individuals aging from 1–5 y to 5–10 y to the vaccinated class.

S2.1.2 Contact network data

The model incorporated empirical age-specific contact rates from the Polymod study in Great Britain (21),

corrected for reciprocity as detailed in the supplementary material of ref. (22). Let Cij be the average number

of daily contacts (both physical and conversational, table S8.4.a in ref. (21)) reported by a participant of age

group i with members of age group j (here individuals are categorized by 5-y age groups from age 0 to age

75 y, so that 1≤(i,j)≤15). Denoting Ni the number of individuals in age group i in MA, the average total

number of contacts between age groups i and j is: Eij = NiCij . Because of the necessary symmetry in the

total number of contacts between age groups, the matrix E = (Eij) was made symmetric: E → 1
2 (E +ET ).

The individual average number of daily contacts between age groups i and j, corrected for reciprocity, was

then given by: ∀(i, j), Cij = Eij

Ni
. The corrected matrix C = (Cij) was used in all simulations and is plotted

in Fig. S6.
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Figure S6: Age-specific contact matrix used in the simulations.

S2.1.3 Model equations

The model equations for newborns (aged 0–4 mo, i = 1) are:

dV1

dt
= 0

dS
(1)
1
dt

= B(t)− (λ1(t) + δ1 − µ1(t))S(1)
1

dE
(1)
1
dt

= λ1(t)S(1)
1 − (σ + δ1 − µ1(t))E(1)

1

dI
(1)
1
dt

= σE
(1)
1 − (γ + δ1 − µ1(t))I(1)

1

dS
(2)
1
dt

= αV V1 + αIR1 − (λ1(t) + δ1 − µ1(t))S(2)
1

dE
(2)
1
dt

= λ1(t)(S(2)
1 + εLV1 + εIR1)− (σ + δ1 − µ1(t))E(2)

1

dI
(2)
1
dt

= σE
(2)
1 − (γ + δ1 − µ1(t))I(2)

1

dR1

dt
= γ(I(1)

1 + I
(2)
1 )− (αI + εIλ1 + δ1 − µ1(t))R1
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Dynamics in older age groups (i = 2, . . . , 17) are given by:

dVi
dt

= δi−1Vi−1 + pi−1(t)(1− εA)δi−1(S(1)
i−1 + ci−1(t)S(2)

i−1)− (αV + εV λi(t) + δi − µi(t))Vi

dS
(1)
i

dt
= (1− pi−1(t)(1− εA))δi−1S

(1)
i−1 − (λi(t) + δi − µi(t))S(1)

i

dE
(1)
i

dt
= δi−1E

(1)
i−1 + λi(t)S(1)

i − (σ + δi − µi(t))E(1)
i

dI
(1)
i

dt
= δi−1I

(1)
i−1 + σE

(1)
i − (γ + δi − µi(t))I(1)

i

dS
(2)
i

dt
= (1− pi−1(t)(1− εA)ci−1(t))δi−1S

(2)
i−1 + αV Vi + αIRi − (λi(t) + δi − µi(t))S(2)

i

dE
(2)
i

dt
= δi−1E

(2)
i−1 + λi(t)(S(2)

i + εLVi + εIRi)− (σ + δi − µi(t))E(2)
i

dI
(2)
i

dt
= δi−1I

(2)
i−1 + σE

(2)
i − (γ + δi − µi(t))I(2)

i

dRi
dt

= δi−1Ri−1 + γ(I(1)
i + I

(2)
i )− (αI + εIλi + δi − µi(t))Ri

Here σ represents the rate of progression from the exposed to the infectious class, γ the recovery rate, B(t)

the time-varying number of births (cf section S1.5), and pi the age-specific vaccination coverage, such that:

∀t, p1(t) = v1(t) (fraction of children having received 3 doses), p3(t) = v2(t) (fraction of children having

received a fifth dose), and pi(t) = 0 for i /∈ {1, 3}. The correction term ci(t) = εAv1(t)
εAv1(t)+1−v1(t)1(i = 3)

is used to account for the fact that, on aging to age group 5–10 y, only children who received a primary

course of vaccination (but for whom the vaccine did not take) can receive a fifth dose. The age-stratified

migration rates, µi(t), were calculated from the smoothed demographic data (cf section S1.5) according to

the equations: Ṅ1(t) = B(t) + (µ1(t)− δ1)N1(t) and Ṅi(t) = δi−1Ni−1(t) + (µi(t)− δi)Ni(t).

The force of infection in age group i = 1, . . . , 17 is given by:

λi = qi

15∑
j=1

Fij(t)C̃ij
Ĩ

(1)
j + θĨ

(2)
j + ι

Ñj

where qi is the probability of infection given exposure in age group i, θ the relative infectiousness of post-

vaccination infections compared with naive infections, and ι an immigration term, fixed to ι = 1 in all

simulations. The total number of individuals in the j-th 5-y age block is denoted by Ñj , such that Ñ1 =

N1 + N2 + N3 (age groups 0–4 mo, 4–12 mo, and 1–5 y) and ∀j = 2, . . . , 15, Ñj = Nj+2. Similarly,

Ĩ
(k)
1 = I

(k)
1 + I

(k)
2 + I

(k)
3 and ∀j ≥ 2, Ĩ(k)

j = I
(k)
j+2, where k ∈ {1, 2}. The matrix C̃ represents the “augmented”

contact matrix, used to integrate the two extra age groups 0–4mo and 4–12mo. Because all individuals in

the 0–5 y age group are assumed to have the same number of contacts, we have: ∀j, C̃1j = C̃2j = C̃3j = C1j
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and ∀i = 4, . . . , 17,∀j, C̃ij = Ci−2,j .

To capture the seasonality in children’s contacts, we incorporated an age-dependent seasonal transmission

term, Fij(t), modeled usingK = 3 periodic spline basis functions with period 1 y, denoted by {Sk(t)}k=1,...,K .

Because of the different seasonality in the number of reports between age groups 5–10 y and 10–20 y (Fig. S3),

we allowed for different seasonality coefficients for these two age groups. For simplicity, seasonal forcing was

also assumed assortative, and applied only within the same age group (i.e., only for contacts between 5–

10 y and 5–10 y, between 10–15–y and 10–15 y, and between 15–20 y and 15–20 y). Therefore, we write

F42(t) = exp(
∑K
k=1 ω

C
k Sk(t)) for age group 5–10 y, F53(t) = F64(t) = exp(

∑K
k=1 ω

T
k Sk(t)) for age groups

10–15 y and 15–20 y, and Fij(t) = 1 in all other cases. The function F (t) = exp(
∑K
k=1 ωkSk(t)) has geometric

mean exp(Et(logF (t))) = exp(
∑K

k=1
wk

K ). To ensure a geometric mean of 1 throughout the year, we therefore

imposed the constraints
∑K
k=1 ω

C
k = 0 and

∑K
k=1 ω

T
k = 0 , so that only 2 seasonal coefficients were estimated,

separately for age group 5–10 y and 10–20 y.

S2.1.4 Observation model

To complete the model specification, we model the observation process. Between times t−∆t and t, where

∆t = 1 month represents the reporting period, we denote by C(1)
i,t (resp. C(2)

i,t ) the complete number of new

naive infections (resp. new post-vaccination infections) in age group i, counted as the number of transitions

from I
(1)
i (resp. I(2)

i ) to R during that time period. The corresponding case report in age group i, CRi,t,

is modeled as a negative binomial: CRi,t ∼ NB(ρ(1)
i (C(1)

i,t + ηC
(2)
i,t ), 1/τ). Thus, E(CRi,t|C(1)

i,t , C
(2)
i,t ) =

ρ
(1)
i (C(1)

i,t + ηC
(2)
i,t ) and Var(CRi,t|C(1)

i,t , C
(2)
i,t ) = ρ

(1)
i (C(1)

i,t + ηC
(2)
i,t ) + τ(ρ(1)

i (C(1)
i,t + ηC

(2)
i,t ))2, where ρ(1)

i is the

reporting probability of naive infections in age group i, η the relative reporting probability of post-vaccination

infections vs. naive infections (assumed age-independent), and τ the reporting overdispersion.

S2.1.5 Model variants and simulation protocol

We considered both deterministic and stochastic variants of the model. For the deterministic variant, the

deterministic skeleton, described by the system of differential equations above, was integrated numerically.

The stochastic variant was implemented as a continuous-time Markov process, approximated via a multi-

nomial modification of the τ -leap algorithm with a fixed time step ∆t = 10−2 yr (23). For this variant,

to ensure that the simulations approximately maintained the correct population sizes in each age group i,

all compartments, Xi, were updated deterministically via, Xi ← [Xie
µi(t)∆t], where [.] is the operation of

rounding to nearest integer value and µi(t) is the time-varying migration rate in age group i. For both

variants, the simulations were started 70 y before the start of vaccination (that is, in 1870), assuming that

the system was at equilibrium in the prevaccine era (16, 22).
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S2.1.6 Reproduction numbers and vaccine impact

Following ref. (18), we define ϕ = 1
p (1− Rp

R0
) a measure of vaccine impact, where p is the vaccine coverage at

birth, R0 the basic reproduction number in the absence of vaccination (p = 0), and Rp the basic reproduction

number with vaccination at coverage p. To calculate these quantities, we considered a simplified model

with 15 age groups (0–5 y, 5–10 y, . . . , 70–75 y; δi = 1/5 yr−1 for i = 1, . . . , 15), a constant birth rate

b = 1/75 yr−1, vaccination at birth at coverage p = v1, no exposed class, no forcing in contact rates, and

constant age-stratified population sizes (such that ∀i,Ni = bNs

δi
where NS is the total population size). The

equations are

dV1

dt
= bNp(1− εA)− (αV + εV λ1 + δ1)V1

dS
(1)
1
dt

= bN(1− p(1− εA))− (λ1 + δ1)S(1)
1

dI
(1)
1
dt

= λ1S
(1)
1 − (γ + δ1)I(1)

1

dS
(2)
1
dt

= αV V1 + αIR1 − (λ1 + δ1)S(2)
1

dI
(2)
1
dt

= λ1(S(2)
1 + εV V1 + εIR1)− (γ + δ1)I(2)

1

dR1

dt
= γ(I(1)

1 + I
(2)
1 )− (αI + εIλ1 + δ1)R1

for age group 0–5 y and

dVi
dt

= δi−1Vi−1 − (αV + εV λi + δi)Vi

dS
(1)
i

dt
= δi−1S

(1)
i−1 − (λi + δi)S(1)

i

dI
(1)
i

dt
= δi−1I

(1)
i−1 + λiS

(1)
i − (γ + δi)I(1)

i

dS
(2)
i

dt
= δi−1S

(2)
i−1 + αV Vi + αIRi − (λi + δi)S(2)

i

dI
(2)
i

dt
= δi−1I

(2)
i−1 + λi(S(2)

i + εV Vi + εIRi)− (γ + δi)I(2)
i

dRi
dt

= δi−1Ri−1 + γ(I(1)
i + I

(2)
i )− (αI + εIλi + δi)Ri

for older age age groups, where ∀i = 1, . . . , 15, λi = qi
∑15
j=1 Cij

I
(1)
j

+θI(2)
j

Nj
.

We define, for i = 1, . . . , 15, the vectors F (1)
i = λiS

(1)
i , F (2)

i = λi(S(2)
i +εV Vi+εIRi), V(1)

i = (γ+δi)I(1)
i −
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δi−1I
(1)
i−1, V

(2)
i = (γ + δi)I(2)

i − δi−1I
(2)
i−1 (by convention δ0 = 0). We form the matrices F 11, F 12, F 21, and

F 22, such that:

F 11
ij = ∂F(1)

i

∂I
(1)
j

= qi
cij
Nj

S
(1)
i

F 12
ij = ∂F(1)

i

∂I2
j

= θF 11
ij

F 21
ij = ∂F(2)

i

∂I
(1)
j

= qi
cij
Nj

(S(2)
i + εV Vi + εIRi)

F 22
ij = ∂F(2)

i

∂I
(2)
j

= θF 21
ij

We similarly form the matrices V 11, V 12, V 21, and V 22:

V 11
ij = ∂V(1)

i

∂I
(1)
j

= (γ + δi)Ii,j − δi−1Ii−1,j

V 12
ij = ∂V(1)

i

∂I
(2)
j

= 0

V 21
ij = ∂V(2)

i

∂I
(1)
j

= 0

V 22
ij = ∂V(2)

i

∂I
(2)
j

= (γ + δi)Ii,j − δi−1Ii−1,j

where Ii,j =


1, i = j

0, i 6= j

is the Kronecker delta. Defining F =

F 11 F 12

F 21 F 22

 and V =

V 11 V 12

V 21 V 22

, the
next-generation matrix is given by G = FV −1, calculated at the disease-free equilibrium, with or without

vaccination. In the absence of vaccination (p = 0), the disease-free equilibria are given by ∀i, V ∗i = S
(2)∗
i =

R∗i = 0 and S(1)∗
i = Ni and we write R0 = ρ(FV −1) the leading eigenvalue of the next-generation matrix.

With vaccination at coverage p, the disease-free equilibria are given by ∀i, S(1)∗
i = (1 − p(1 − εA))Ni, V ∗i =

p(1−εA)Ni
∏i
k=1

δk

δk+αV
, S

(2)∗
i = Ni−V ∗i −S

(1)∗
i , R∗i = 0; Rp = ρ(FV −1). The two reproduction numbers R0

and Rp were calculated for each fitted model and are presented in the all the tables of parameter estimates

below.

S2.2 Model parametrization

S2.2.1 Fixed parameters

The average latent period (DE = 8/365 yr), and the average infectious period (DI = 15/365 yr), were fixed

at values used in previous models (16, 20, 22). For the deterministic model, these durations were converted to
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annual rates, via σ = 1/DE and γ = 1/DI . For the stochastic model, we used a discrete-time correction (23),

such that σ = − 1
∆t log(1− ∆t

DE
) and γ = − 1

∆t log(1− ∆t
DI

). According to previous epidemiological studies (14–

16), we assumed perfect infection-derived immunity, i.e., αI = εI = 0. The vaccination coverages for the

primary series and the preschool booster dose were fixed at v1 = 0.97 and v2 = 0.93. The smoothed annual

number of births, B(t), and the age-stratified annual migration rates, µi(t), were fixed and included as

covariates in the model.

According to previous evidence (16), the probabilities of infection given exposure, qi, were allowed to

decrease with age. For simplicity, we estimated only three parameters in 0–10 y (parameter q1), in 10–

20 y (relative susceptibility to infection in 10–20 y to that in 0–10 y, parameter q2
q1
), and in ≥ 20 y (relative

susceptibility to infection in ≥ 20 y to that in 10–20 y, parameter q3
q2
). Despite scarce evidence, the reporting

fidelity of pertussis is believed to decrease with age (24, 25). Based on US data during 1985–1988, Sutter

and Cochi evaluated the completeness of reported pertussis hospitalizations, indeed found to decrease with

age (26). As an aside, these authors also calculated the complete number of pertussis cases during that

period, by dividing their estimates of the age-stratified complete number of pertussis hospitalizations by

the age-specific probabilities of hospitalization. Comparing this number to the total number of reported

cases during that period, the completeness of reported cases was estimated at 11.6% (26). We repeated

this simple calculation to estimate how the completeness of reported cases varies with age. Because the

age-specific reported cases were not reported in the study by Sutter and Cochi, we used the age distribution

of reported cases during 1980–1989 in the US as a proxy (27). Thus, we multiplied the total number of

reported cases indicated by Sutter and Cochi (14,057) by the proportion of cases by age group indicated

in ref. (27) to estimate the age-specific reported cases during 1985–1988. These figures were then divided

by the age-specific true number of cases estimated by Sutter and Cochi to calculate age-specific reporting

probabilities (Table S3). The estimated reporting probabilities were 0.15 (0.09–0.27) in 0–1 y, 0.09 (0.04,

0.09) in 1–5 y, and 0.04 (0.01, 0.04) in ≥ 5 y. We fixed the reporting probabilities of naive infections in 0–1 y,

1–5 y, 5–10 y according to these estimates. By contrast, because of the use of serological testing in ≥ 10 y, the

reporting probability of naive infections could not be fixed and was estimated in these age groups (parameter

ρ1(10+) = ρ
(1)
i≥5), as well as the relative reporting probability of post-vaccination infections (parameter η,

assumed independent of age). The values of the fixed parameters are indicated in Table S4.
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Age class <1 y 1–4 y 5–9 y ≥10 y Source

True no of hospitalizations 10311 2167 561 1229 (26), Table 2

Hospitalization probability 0.235 (0.147–0.42) 0.056 (0.023–0.058) 0.017 (0.004–0.017) 0.017 (0.004–0.017) (26), Table 6

True no of cases 43877 (24550–70143) 38696 (37362–94217) 33000 (33000–140250) 72294 (72294–307250) Calculated

Total no cases reported 14057 CDC, (26)

Proportion of cases 0.471 0.252 0.09 0.187 (27), Table 2

No cases reported 6621 3542 1265 2629 Calculated

Reporting probability 0.15 (0.09–0.27) 0.09 (0.04–0.09) 0.04 (0.01–0.04) 0.04 (0.01–0.04) Calculated

Table S3: Estimates of age-specific reporting probabilities.

Symbol Parameter Value
DE Latent period 8 days
DI Infectious period 15 days
(Cij) Age-specific contact rates Fig. S6
αI Waning rate of infection-derived immunity (yr−1) 0
εI Leakiness of infection-derived immunity 0

ρ
(1)
1 , ρ

(1)
2 Reporting probability of naive infections in 0–1 y 0.15

ρ
(1)
3 Reporting probability of naive infections in 1–5 y 0.5× 0.15
ρ

(1)
4 Reporting probability of naive infections in 5–10 y 0.25× 0.15
t0 Start date of vaccination 1940
t1 End date of linear ramp-up for vaccination 1955

δi=1,...,17 Aging rates (yr−1) ( 12
4 ,

12
8 ,

1
4 ,

1
5 , . . . ,

1
5 )

Table S4: Fixed model parameters.

S2.2.2 Estimated parameters and estimation procedure

To determine the mode of vaccine-derived immunity, we used likelihood-based inference to evaluate the

support of three models:

1. No loss of vaccine-derived immunity (no-loss model). After an initial failure in take, vaccine-

derived is hypothesized to be perfect, so that no post-vaccine infections are possible. For this model,

the estimated parameters were εA (fraction of primary vaccine failures), q1, q2/q1, q3/q2 (susceptibility

factors), ωC1,2 (seasonality coefficients in children 5–10 y), ωT1,2 (seasonality coefficients in adolescents

10–20 y), ρ1(10+) (reporting probability of naive infections in ≥ 10 y), and τ (reporting overdispersion).

2. Waning vaccine-derived immunity (waning model). After an initial failure in take, vaccine-

derived immunity is hypothesized to wane at rate αV . The estimated parameters are those of the no-

loss model, plus αV , θ (relative transmissibility of post-vaccine infections to that of naive infections),

and η (relative reporting probability of post-vaccine infections to that of naive infections).

3. Leaky vaccine-derived immunity (leaky model). After an initial failure in take, vaccine-derived
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immunity is hypothesized to be leaky, with degree of leakiness εV . The estimated parameters are those

of the no-loss model, plus εV , θ (relative transmissibility of post-vaccine infections to that of naive

infections), and η (relative reporting probability of post-vaccine infections to that of naive infections).

For each model, parameters were estimated in two steps:

1. Trajectory matching. The deterministic variant of the model was fitted to the data using maximum

likelihood estimation via trajectory matching. In this case, the observation model is the only source

of variability in simulated observations, and the likelihood can be calculated exactly. The likelihood

was maximized using the subplex algorithm, implemented in the R package nloptr (28). The search

was initiated over 104 starting points generated using Latin hypercube sampling over broad parameter

ranges (Table S5). To ensure convergence to the maximum likelihood estimate (MLE), the optimiza-

tion was repeated on the 500 best parameter sets. A parametric bootstrap was then used to assess

uncertainty in parameter estimates. For each model, 500 synthetic time series of simulated data were

generated at the MLE. For each of these 500 synthetic data sets, parameters were re-estimated as

described above, resulting in a bootstrap distribution of parameter estimates. 95% confidence inter-

vals for the estimated parameters and for the derived parameters R0 (basic reproduction number), Rp

(vaccine reproduction number), ϕ (vaccine impact), and ρ2(10+) = ηρ1(10+) (reporting probability of

post-vaccine infections in ≥ 10 y) were then calculated from the bootstrap distribution.

2. Maximum iterated filtering. The stochastic variant of the model was fitted using the maximum

iterated filtering (MIF) algorithm (29), implemented in the R pomp package version 1.2.1.1 (30). The

following algorithmic parameters were used: 2000 particles; 50 MIF iterations; random walk intensity

of 10−6 during the first MIF iteration and 10−2 for the next 49 iterations. Because the model was

simulated for a long period before the first data point (January 1990), a time-varying random walk

was used for the parameters, with no perturbation until the first data point. For each MIF run, the

log-likelihood was computed as the log of the average likelihood of 10 replicate particle filters, each

with 5 × 103 particles; the standard error of the log-likelihood estimate was computed from these

replicates using a jackknife implemented in the function logmeanexp in the pomp package. Because

each MIF run required ≈24 hours of computation, we sought to find good starting parameter values

to initiate the algorithm. To do this, we calculated for each model the range of starting parameters of

trajectory matching such that {Θ : 2 × log L(Θ̂)
L(Θ) < χ2

dim(Θ),0.95}, where Θ̂ is the maximum likelihood

estimate from trajectory matching, dim(Θ) the number of estimated parameters, and χ2
dim(Θ),0.95 the

95% quantile of a χ2 distribution with dim(Θ) degrees of freedom. The search was then initiated

over 100 starting points generated using Latin hypercube sampling over that range. As for trajectory
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matching, the estimations were repeated from the best parameter sets to ensure convergence to the

MLE and a parametric bootstrap was used to generate a bootstrap distribution of size 100.

Symbol Parameter Start range
q1 Susceptibility factor in 0–10 y [0, 1]
q2
q1

Relative susceptibility in 10–20 y vs. 0–10 y [0, 1]
q3
q2

Relative susceptibility in ≥ 20 y vs. 10–20 y [0, 1]
ω1
C , ω

2
C , ω

1
T , ω

2
T Seasonality coefficients [−5, 5]

θ Relative infectiousness of post-vaccine infections [0, 1]
εA Probability of primary vaccine failure [0, 1]
αV Waning rate of vaccine-derived immunity [0, 10] yr−1

εV Leakiness of vaccine-derived immunity [0, 1]
ρ1(10+) Reporting probability of naive infections in 10–20 y [0, 1]

η Relative reporting probability of repeat infections [0, 1]
τ Reporting overdispersion [0, 10]

Table S5: Parameters ranges used to generate starting parameter sets for trajectory matching.
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S3 Supplementary results

S3.1 Parameter estimates

The parameter estimates of the base model (wP- and aP-derived immunity assumed identical, perfect

infection-derived immunity) are presented in Table S8 (deterministic variant) and in Table S7 (stochas-

tic variant). In Fig. S7, we plot the estimated seasonal transmission term, given by exp(
∑3
k=1 ω̂

C
k Sk(t))

in 5–10 y and by exp(
∑3
k=1 ω̂

T
k Sk(t)) in 10–20 y (cf. Text S2.1.3). Notably, this term differed in the two

age groups: it peaked during April–May in 5–10 y, and later in the year (August–September) in 10–20 y.

Although we did not investigate further, we note that this result might explain the phase delay in reported

cases observed in 10–20 y (Fig. S4).

Quantity No-loss model Leaky model Waning model
logL –3726.9 (se: 0.4) –3664.9 (se: 0.5) –3594.5 (se: 0.6)
AIC 7474 7356 7215

∆AIC 259 141 0
Rp 2.4 (1.8, 2.7) 1.6 (1.3, 2.2) 1.8 (1.5, 2.0)
R0 13.6 (7.5, 23.0) 12.6 (9.0, 19.4) 10.1 (6.5, 17.2)

Vaccine impact 0.85 (0.70, 0.95) 0.85 (0.75, 0.93) 0.90 (0.81, 0.95)

Table S6: Model comparison. The results are presented for the stochastic variant of the model, estimated
using the MIF algorithm. The best AIC value is indicated in boldface.
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Quantity No-loss model Waning model Leaky model
logL –3726.9 (se: 0.4) –3594.5 (se: 0.6) –3664.9 (se: 0.5)
AIC 7474 7215 7356

∆AIC 255 0 135
q1 0.10 (0.05, 0.16) 0.09 (0.06, 0.15) 0.09 (0.07, 0.14)
q2 0.09 (0.04, 0.17) 0.05 (0.03, 0.11) 0.09 (0.06, 0.13)
q3 0.032 (0.014, 0.063) 0.008 (0.005, 0.021) 0.030 (0.016, 0.044)

ρ1(10+) 0.89 (0.42, 0.98) 0.63 (0.28, 1.00) 0.60 (0.49, 1.00)
η — 0.39 (0.19, 1.00) 0.42 (0.16, 0.75)

ρ2(10+) — 0.24 (0.10, 0.66) 0.25 (0.12, 0.57)
θ — 0.99 (0.40, 1.00) 0.71 (0.20, 1.00)
τ 0.28 (0.24, 0.35) 0.19 (0.14, 0.24) 0.31 (0.26, 0.36)
εA 0.15 (0.05, 0.27) 0.04 (0.01, 0.08) 0.05 (0.03, 0.17)

αV (yr−1) — 0.011 (0.003, 0.021) —
εV — — 0.06 (0.02, 0.14)
R0 13.6 (7.5, 23.0) 10.1 (6.5, 17.2) 12.6 (9.0, 19.4)
Rp 2.4 (1.8, 2.7) 1.8 (1.5, 2.0) 1.6 (1.3, 2.2)
ϕ 0.85 (0.70, 0.95) 0.85 (0.75, 0.93) 0.90 (0.81, 0.95)

Table S7: Parameter estimates of the stochastic variant of the base model (similar aP- and wP-
derived immunity, perfect infection-derived immunity). For each model tested (no loss of vaccine-
derived immunity, waning vaccine-derived immunity, or leaky vaccine-derived), the maximum likelihood
estimates (95% CI) from the MIF algorithm are presented. The standard error (se) of the log-likelihood was
calculated using 20 replicate particle filters, each with 5× 104 particles. The best AIC value is indicated in
boldface. Please refer to Table S5 for the meaning of the parameters.

Quantity No-loss model Waning model Leaky model
logL –3915.2 –3787.9 –3873.7
AIC 7850 7602 7773

∆AIC 631 383 554
q1 0.07 (0.06, 0.09) 0.07 (0.05, 0.10) 0.09 (0.07, 0.13)
q2 0.07 (0.06, 0.09) 0.03 (0.02, 0.07) 0.09 (0.06, 0.12)
q3 0.022 (0.016, 0.026) 0.005 (0.004, 0.014) 0.029 (0.017, 0.041)

ρ1(10+) 0.83 (0.70, 1.00) 0.89 (0.23, 1.00) 0.53 (0.45, 1.00)
η — 0.28 (0.15, 1.00) 0.65 (0.61, 0.74)

ρ2(10+) — 0.25 (0.08, 0.53) 0.34 (0.09, 0.78)
θ — 1.00 (0.46, 1.00) 1.00 (0.21, 1.00)
τ 0.73 (0.65, 0.80) 0.56 (0.50, 0.62) 0.69 (0.61, 0.74)
εA 0.21 (0.17, 0.25) 0.05 (0.02, 0.07) 0.04 (0.02, 0.06)

αV (yr−1) — 0.018 (0.007, 0.044) —
εV — — 0.04 (0.03, 0.17)
R0 10.4 (8.4, 12.5) 7.6 (5.7, 11.6) 12.8 (9.2, 17.1)
Rp 2.4 (2.2, 2.5) 1.7 (1.6, 1.8) 1.4 (1.1, 1.6)
ϕ 0.79 (0.75, 0.83) 0.79 (0.72, 0.88) 0.92 (0.88, 0.95)

Table S8: Parameter estimates of the deterministic variant of the base model (similar aP-
and wP-derived immunity, perfect infection-derived immunity). For each model tested (no loss
of vaccine-derived immunity, waning vaccine-derived immunity, or leaky vaccine-derived), the maximum
likelihood estimates (95% CI) of trajectory matching are presented. The best AIC value is indicated in
boldface. Please refer to Table S5 for the meaning of the parameters.
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Figure S7: Estimated age-specific seasonal forcing.

S3.2 Model assessment

We first assessed the fitted model by visual inspection of model simulations from 1990 (Fig. 2A in the main

text). To initialize these simulations, we first ran particles from 1870 to the first data point (in January

1990) and calculated their log-likelihood at that point. We then used the particles most consistent with that

data point as initial conditions for subsequent simulations.

To further quantify the agreement between model and data, we computed a generalized R2, as defined

in ref. (16). Let da,t represent the observed reported incidence in age group a during time t and ma,t the

corresponding simulated quantity. The generalized R2 is then given by

R2 = 1−
∑
a,t[log10(1 + da,t)− log10(1 +ma,t)]2∑
a,t[log10(1 + da,t)− ¯log10(1 + da)]2
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where ¯log(1 + da) = 1
T

∑
t log(1 + da,t) is the average log-incidence in age group a. In this formula, the

numerator represents the residual sum-of-squares of the fitted model and the denominator that of a null

model with constant log-incidence (equal to the average log-incidence) by age group. Thus, R2 measures

the relative decrease (R2 > 0), or increase (R2 < 0), in the residuals sum-of-squares of our model compared

with the null model. It quantifies the proportion of variance explained by the model to that not explained

by age alone.

We calculated the R2 for forecast horizons of 1, 6, and 12 months. To to this, we first divided the

time period 1990–2005 into non-overlapping time blocks of 1, 6, or 12 months. For each time bock, we

then initialized the state variables with their filtering means (calculated using a particle filter with 5 × 103

particles) one month before the beginning of the time block. Finally, we ran 5 × 103 model simulations

over the time block and averaged across the simulations to calculate ma,t. One-month-ahead predictions are

presented in Fig. 2B in the main text; 6-mo- and 12-mo- ahead are presented in Fig. S8. The corresponding

R2 were 0.19 and 0.04.
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Figure S8: Comparison of model-data agreement at 6-mo and 12-mo forecast horizons.
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S3.3 Predictability as a function of the generation time

We conducted a simulation study to determine a baseline of dynamics predictability of our model for different

generation times (7, 14, 21, or 28 days). We hypothesized that higher generation times would lead to lower

predictability, as a result of less definite periodicity and noisier dynamics (31). For simplicity, we ignored

the latent period (σ →∞), so that the infectious period equalled the generation time. For each generation

time, we first back-calculated the susceptibility in 0–10 y (parameter q1) to maintain a R0 of 10 across

simulations. We then generated 100 synthetic data sets of age-specific reported cases, assuming no reporting

overdispersion (τ = 0). Using each simulated data set as synthetic data, we calculated the generalized R2

based on one-month-ahead predictions, as defined in the previous section.

As shown in the main text (Fig. 2C), the generalized R2 indeed decreased with the generation time, while

its variability increased. Notably, the R2 remained below 60% for the shortest generation time, suggesting

an intrinsic limit to predictability in complex (i.e., stochastic, nonlinear, and forced) age-structured models.

In Fig. S10, we replicate Fig. 2B for a randomly chosen synthetic data set. Although the true model is

known, the overestimation of troughs is evident. This is most readily explained by the fact that prediction

means represent average simulations.
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Figure S9: Data sets of monthly reports generated for the simulation study. Five stochastic realizations are
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Figure S10: Quantitative comparison of model-data agreement for different generation times.

S3.4 Sensitivity analyses

S3.4.1 Assessing differences of immunity between aP and wP vaccines

To examine possible differences of immunity induced by wP and aP vaccines, we fitted an alternative model

in which infection- and wP-derived immunity were assumed identical (with protected individuals in the

R compartment), but possibly different from aP-derived immunity (with protected individuals in the V

compartment). According to previous studies, we assumed that infection/wP-derived immunity was waning

with average duration of protection 75 y (15). During the vaccine transition period, we also assumed, for

simplicity, that the first dose of vaccine received determined the nature of subsequent immunity (32). Thus,

all infants vaccinated before October 1996 were assumed to be protected by wP, while those vaccinated after

were assumed to be protected by aP. We then repeated the estimations to determine which mechanism of

loss of immunity (here specific to aP) was best supported by the data (Table S9).
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Quantity Waning model Leaky model
TM MIF TM MIF

logL –3779.8 –3611.2 (se: 1.3) –3807.5 –3622.8 (se: 0.4)
AIC 7586 7248 7641 7272

∆AIC 338 0 393 24
q1 0.09 (0.06, 0.15) 0.08 (0.05, 0.10) 0.12 (0.08, 0.17) 0.08 (0.06, 0.11)
q2 0.04 (0.03, 0.09) 0.04 (0.03, 0.05) 0.06 (0.04, 0.12) 0.04 (0.03, 0.06)
q3 0.004 (0.003, 0.011) 0.004 (0.003, 0.006) 0.006 (0.005, 0.016) 0.004 (0.003, 0.007)

ρ1(10+) 1.00 (0.28, 1.00) 0.89 (0.64, 0.99) 1.00 (0.41, 1.00) 0.67 (0.30, 1.00)
η 0.27 (0.13, 0.45) 0.30 (0.14, 0.62) 0.26 (0.12, 0.42) 0.49 (0.20, 0.85)

ρ2(10+) 0.27 (0.07, 0.41) 0.27 (0.11, 0.56) 0.26 (0.08, 0.38) 0.33 (0.12, 0.68)
θ 1.00 (0.24, 1.00) 0.99 (0.50, 1.00) 0.48 (0.13, 0.76) 0.92 (0.55, 1.00)
τ 0.55 (0.49, 0.60) 0.22 (0.18, 0.33) 0.58 (0.51, 0.63) 0.19 (0.17, 0.26)
εA 0.03 (0.01, 0.06) 0.05 (0.02, 0.14) 0.04 (0.01, 0.06) 0.06 (0.02, 0.14)

αV (yr−1) 0.020 (0.019, 0.036) 0.017 (0.002, 0.039) — —
εV — — 0.07 (0.06, 0.13) 0.05 (0.01, 0.07)
R0 9.1 (7.1, 16.4) 8.7 (5.4, 10.3) 12.5 (9.0, 19.9) 8.5 (6.5, 12.0)
Rp 2.1 (2.0, 2.6) 1.9 (1.0, 2.4) 1.2 (1.0, 1.5) 1.1 (0.8, 1.5)
ϕ 0.79 (0.67, 0.90) 0.80 (0.55, 0.93) 0.93 (0.91, 0.98) 0.89 (0.81, 0.95)

Table S9: Parameter estimates of the model with identical infection- and wP-derived immunity,
but separate aP-derived immunity. For each model tested (waning or leaky aP-derived immunity), the
maximum likelihood estimates (95% CI) of trajectory matching (TM) and of the maximum iterated filtering
algorithm (MIF) are presented. The best AIC value is indicated in boldface. Please refer to Table S5 for
the meaning of the parameters.

S3.4.2 Assessing the robustness of results to another contact matrix

In the absence of empirical contact data in the US, the results presented in the main text were obtained

using the Polymod contact matrix in Great Britain. To assess the robustness of our results to this critical

assumption, we calculated a contact matrix in MA using the method described in ref. (33). Briefly, the

method uses highly detailed census and demographic data to build a matrix of “effective” contacts M =

(Mij). This matrix defines contacts among age groups up to a scaling constant Ntot, usually absorbed in the

transmission rate (33). In our simulations, we fixed this constant to the total contact rate in the Polymod

matrix. As shown in Fig. S11, the matrix presented fewer inter-generational contacts between children

and adults, but more contacts between adults than the Polymod matrix. Repeating the estimations using

that matrix, we found our main results to be robust (Table S10). Indeed, the waning model was preferred

to the leaky model (∆AIC=153), with estimates comparable to those obtained with the Polymod contact

matrix (waning rate 0.007 [0.001, 0.020] y−1, primary vaccine failure 0.03 [0.01, 0.05], vaccine impact 0.90

[0.80, 0.96]). We note, however, that the waning model was less consistent with the data using that matrix

(∆ logL = −41.4, cf. Tables S7–S8).
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Figure S11: Contact matrix in MA.
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Quantity Waning model Leaky model
TM MIF TM MIF

logL –3795.9 –3637.8 (se: 0.5) –3884.3 –3714.5 (se: 0.4)
AIC 7618 7302 7795 7455

∆AIC 316 0 493 153
q1 0.09 (0.05, 0.14) 0.18 (0.10, 0.30) 0.13 (0.09, 0.23) 0.17 (0.12, 0.29)
q2 0.05 (0.04, 0.10) 0.09 (0.05, 0.24) 0.13 (0.09, 0.22) 0.13 (0.09, 0.27)
q3 0.008 (0.006, 0.017) 0.014 (0.007, 0.058) 0.039 (0.025, 0.072) 0.042 (0.027, 0.098)

ρ1(10+) 0.54 (0.26, 0.87) 0.74 (0.41, 0.98) 0.64 (0.53, 1.00) 0.81 (0.64, 1.00)
η 0.30 (0.16, 0.82) 0.48 (0.06, 0.94) 0.35 (0.08, 1.00) 0.27 (0.01, 0.88)

ρ2(10+) 0.16 (0.06, 0.36) 0.36 (0.06, 0.77) 0.22 (0.06, 0.97) 0.22 (0.01, 0.80)
θ 1.00 (0.54, 1.00) 0.89 (0.23, 1.00) 1.00 (0.08, 1.00) 0.51 (0.05, 1.00)
τ 0.58 (0.51, 0.64) 0.28 (0.23, 0.33) 0.71 (0.64, 0.77) 0.32 (0.27, 0.38)
εA 0.04 (0.02, 0.07) 0.03 (0.01, 0.05) 0.05 (0.03, 0.08) 0.05 (0.01, 0.16)

αV (yr−1) 0.016 (0.007, 0.034) 0.007 (0.001, 0.020) 0 0
εV 0 0 0.04 (0.01, 0.11) 0.05 (0.01, 0.16)
R0 7.5 (5.1, 12.8) 14.7 (8.3, 28.5) 14.2 (10.4, 25.4) 16.5 (11.9, 31.4)
Rp 1.7 (1.6, 1.9) 1.8 (1.6, 2.1) 1.6 (1.3, 2.2) 1.7 (1.3, 2.5)
ϕ 0.79 (0.69, 0.89) 0.90 (0.80, 0.96) 0.91 (0.88, 0.95) 0.92 (0.88, 0.97)

Table S10: Parameters estimates with a contact matrix in MA. For each model tested (waning or leaky
vaccine-derived immunity), the maximum likelihood estimates (95% CI) of trajectory matching (TM) and of
the maximum iterated filtering algorithm (MIF) are presented. The best AIC value is indicated in boldface.
Please refer to Table S5 for the meaning of the parameters.

S3.4.3 Parameter estimates for a model integrating leakiness and waning

For definiteness, we examined the different modes of vaccine failure separately. In Table S11, we present the

parameter estimates of a model mixing waning and leakiness. Notably, the likelihood of that model (−3598.5

(se: 1.8)) was almost identical to that of the waning model (–3596.4 (se: 1.5)), with confidence intervals for

the leakiness enclosing 0. These results further confirm the lack of evidence for leakiness in the MA data.
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Quantity Waning and leaky model
TM MIF

logL –3787.8 –3598.5 (se: 1.8)
AIC 7604 7225

∆AIC 379 0
q1 0.07 (0.05, 0.10) 0.09 (0.05, 0.13)
q2 0.03 (0.02, 0.06) 0.04 (0.03, 0.11)
q3 0.005 (0.004, 0.013) 0.008 (0.004, 0.026)

ρ1(10+) 0.88 (0.25, 1.00) 0.74 (0.39, 1.00)
η 0.30 (0.18, 0.81) 0.39 (0.04, 0.89)

ρ2(10+) 0.26 (0.10, 0.53) 0.29 (0.04, 0.67)
θ 1.00 (0.40, 1.00) 0.99 (0.35, 1.00)
τ 0.56 (0.50, 0.61) 0.22 (0.18, 0.28)
εA 0.04 (0.02, 0.06) 0.06 (0.03, 0.12)

αV (yr−1) 0.017 (0.006, 0.024) 0.011 (0.002, 0.026)
εV 0.00 (0.00, 0.04) 0.01 (0.00, 0.03)
R0 7.9 (5.8, 11.2) 9.1 (5.3, 16.2)
Rp 1.7 (1.4, 1.8) 1.8 (1.6, 2.0)
ϕ 0.80 (0.74, 0.89) 0.83 (0.70, 0.92)

Table S11: Parameter estimates of a model mixing waning and leakiness. For each model tested (waning or
leaky vaccine-derived immunity), the maximum likelihood estimates (95% CI) of trajectory matching (TM)
and of the maximum iterated filtering algorithm (MIF) are presented. The best AIC value is indicated in
boldface. Please refer to Table S5 for the meaning of the parameters.
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